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Turbulent mass transfer to a wall a t  high Schmidt numbers is controlled by the 
velocity field within the viscous sublayer. Measurements have been obtained 
of the root-mean-square fluctuating mass transfer coefficient and the frequency 
spectrum of the fluctuating mass transfer coefficient for a Schmidt number of 
about 2300. From an order-of-magnitude analysis it is concluded that flowfluctua- 
tions in the direction of mean flow have little effect on the mass transfer fluctua- 
tions. A comparison of the mass transfer spectrum with the spectrum of the 
component of the velocity gradient in the transverse direction sa reveals that 
the high-frequency portion of the s, spectrum is not effective in transferring 
mass. Approximate relations between the mass transfer spectrum and the s, 
spectrum are developed for high frequencies and for low frequencies. 

1. Introduction 
Mass transfer between a turbulent fluid and a solid wall a t  a high Schmidt 

number, S, produces a very thin concentration boundary layer in the fluid. 
For example, Lin, Moulton & Putnam (1953) measured concentration profiles 
of cadmium ion [S = 9001 when depositing cadmium on one wall of a channel 
through which the fluid was flowing. They found that all of the concentration 
change occurred within the viscous sublayer. One concludes from such measure- 
ments that the turbulent exchange of mass between a fluid and a solid surface 
at high Schmidt numbers is related to the fluctuating velocity field within the 
viscous sublayer. This paper describes experimental and theoretical studies 
aimed at defining this relation. The results should be of interest not only because 
they contribute to our understanding of turbulent mass transfer but also because 
they might give some insight on how to model turbulent flow close to a wall. 

The system considered is fully-developed turbulent flow in a 7.625in. diameter 
pipe. An electrochemical reaction is carried out on the wall of a section of nickel 
pipe under conditions such that it is controlled by the rate of mass transfer. This 
test section is long enough that the concentration boundary layer is developed 
fully. The Schmidt number for the system studied varied from 2240 to 2410. 
A nickel wire is embedded in, and ground flush with, the wall of the test section 
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near its outlet. This wire is insulated from the rest of the mass transfer section 
so that the electric current flowing through it is proportional to the local rate of 
mass transfer per unit area, N .  A local instantaneous mass transfer coefficient K 
can be defined as K = N/(C,  - Cw), where C, and C,,, are the concentrations of the 
reacting species in the bulk and at the wall. If the reaction at  the electrode is 
fast enough C, 2 0 and fluctuations in the current are directly related to fluctua- 
tions in K.  Measurements have been made of the time-averaged mass transfer 
coefficient x, the mean-squared value of the fluctuations in the mass transfer 
coefficient and the spectral density function of the fluctuations in the mass 
transfer coefficient W,(n), where n is frequency in cycles per second. An analysis 
is presented which relates K, and W,(n) to measurements of the properties 
of the fluctuating shear stress at  the wall by Mitchell & Hanratty (1966), Sirkar 
(1969) and Sirkar & Hanratty (1970) and to studies of certain aspects of the 
structure of turbulence close to a wall by Kline and his co-workers (Kline, 
Reynolds, Schraub & Runstadler 1967; Schraub & Kline 1965). 

The experiments are a continuation of work in a 1 in. pipe by Shaw & Hanratty 
(1 964). The interpretation of these previous experiments was handicapped because 
the very small scale of k in the transverse direction caused averaging over the 
test electrode. Shaw & Hanratty estimated by carrying out measurements 
with electrodes of different size and by extrapolating these measurements to an 
electrode of zero size. The use of a 7.625 in. pipe in the recent research gave much 
better resolution so that it was possible to measure directly the local value of k. 
It has been found that the extrapolation procedure used by Shaw & Hanratty 
leads to considerable error. 

2. Order-of-magnitude analysis 
An order-of-magnitude analysis of the mass balance equations similar to that 

done by Shaw & Hanratty (1964) will first be performed. It is found that the 
fluctuating concentration field is governed primarily by flow fluctuations per- 
pendicular to the wall and transverse to the direction of mean flow. A greatly 
simplified version of the mass balance can then be derived. 

The concentration of the species being transferred normalized with respect to 
the bulk concentration at  the entrance to the mass transfer section is designated 
as C+ = c/cb,. The time-averaged dimensionless concentration is designated as 
C+. The concentration fluctuations c+ are defined as C+ = c+ + c+. Because of 
symmetry C f  does not vary in the circumferential direction. Since the concentra- 
tion profile is fully developed, c+ varies linearly with distance in the direction 
of mean flow x.  Prom a mass balance it is found that 

- 

where d is the pipe diameter and U, is the bulk-averaged velocity. From the 
measured values of 1 it is concluded that acblax was negligible over the length 
of the mass transfer section. 



Relation of turbulent 'mass transfer to the velocity Jield 591 

The velocity components in the x direction, in the direction perpendicular to 
the wall y and in the z direction are normalized with respect to the friction velocity 
ut and are designated by U+, V+ and W+. Since the flow is fully developed only 
the time-averaged value of U is non-zero. Therefore F = 0 and F = 0. Fluctuat- 
ing velocity components u+, v+ and w+ are defined by the equations 

u+ = U++u+, v+ = Vf+v+,  w+ = W++w+, (2) 
and are related through the equation of conservation of mass 

au+ av+ aw+ 
ax+ ay+ az+ 
--+-+- = 0. ( 3 )  

Here the co-ordinates have been made dimensionless using a length defined in 
terms of the kinematic viscosity v and the friction velocity. 

A mass balance yields an equation for C+ : 

where the time has been made dimensionless with respect to u* and v. From the 
measurements to be presented in the paper it is found that (p)!i/E z 0.3. There- 
fore c+ N 0 . 3 @ - .  From (l), &?+/ax+ = 4x+lR N where R = dUJv and 
K+ = K/u  *. The instantaneous concentration gradient in the direction of mean 
flow is determined primarily from the fluctuating concentration field. Shaw & 
Hanratty (1964) reported a dimensionless integral scale for k in the x direction, 
A&, of approximately 350. The following estimate can therefore be made, if 
we assume that the magnitude of ac+/az+ is given as c+IAk+,,: 

From measurements of the fluctuating wall shear stress obtained by Mitchell & 
Hanratty (1966), by Sirkar (1969), and by Sirkar & Hanratty (1970), u+ N 0.30- 
0 . 3 5 a +  and W+ N 0.09gf. From the measurements of the effect of the size of 
the electrode on the intensity of the mass transfer fluctuations presented in this 
paper we have roughly estimated that the integral scale of the mass transfer 
fluctuations in the z direction is given as 2 6.7. We can therefore assign the  
following orders of magnitude : 

0-3 x 0.32 - 
u+E+ ax+ j=J+ 350 c+, 

One concludes from ( 5 ) ,  (6) and (7)  that u+aC+/ax+ and 8+aC+lax+ can be 
neglected compared to W+ aC+/az+. Because of the thinness of the concentration 
boundary layer in the limit of large Schmidt numbers we neglect a2C+/ax+2 and 
a2C+/az+2 compared to azC+/ay+2 and as a consequence of (5), (6) and (7) we 
obtain the following simplified version of (4) : 
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For very large Schmidt numbers the concentration boundary layer is so thin 
that only the limiting behaviour of the flow field as y+ --f 0 need be considered. 
Sirkar & Hanratty (1970) showed that as y+ --f 0 

w+ = y+s;(z+, t+). (9) 

An expression for v+ can be obtained from the equation of conservation of mass. 
From Mitchell & Hanratty’s measurements the dimensionless x and z scales of 
the components of the fluctuating wall shear stress in the direction of flow are 
A,+, 2 480 and A$ 12. Since measurements of A& are not available, it will 
be assumed that AZw g A&. One therefore finds 

From (10) and (11) aw+/az+ % au+/ax+ so that (3) can be simplified to 

av+ aw+ 
ay+ ax+ 
-+- = 0. 

Equation (12) can be integrated to give 

v+ = - &y+2 as,’/az+. 

In order to make any progress in solving (8) ,  (9) and (1  3) to determine a relation 
between the fluctuating concentration field and the fluctuating flow field one 
must give some consideration to the structure of the turbulence close to the 
wall and to the effect of the aC+/at+ term. An Eulerian time scale T$ is calculated 
as  125 from the measurements of flc(n) reported in this paper. Therefore 

ac+ 0.30 - 
at+ 125 
--,--c+ 

and cannot be neglected with respect to W+ aC+/az+. 

obtain asymptotic solutions valid for low and high frequencies. 
It is not clear how to solve (8) analytically. Therefore, we have only tried to 

3. The pseudo-steady-state approximation 

aC+/at+ is neglected so that 
At low frequencies one can make apseudo-steady-state approximation whereby 

ac+ a c +  1 a2c+ w+-+v+- = -- a ~ +  ay+ say+2* 

One might expect that this equation describes the role of the large eddy structure 
which is controlling the average transfer rate to the surface. Therefore, in order 
to integrate (15), some assumptions need to be made about the turbulence 
structure close to a wall. 

Recent studies by Kline et al. with hydrogen bubble techniques indicate the 
presence of ‘spatially well-organized ’ time-dependent motions in the viscous 
sublayer. Definite regions of fluid updrafts have been identified at which the 
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flow in the x direction assumes very low values. These updraft regions have been 
observed to be separated from each other by a non-dimensional distance (in wall 
parameters) in the x direction of A+ = 75-105 for 0 < y+ < 7. Schraub & Kline 
(1965) have reported measurements of the instantaneous profiles of the u-velocity 
component and the w-velocity component which showed a regular, almost 
sinusoidal, z dependence. Now if we assume that w+ can be represented by a 
Gaussian distribution, it can be shown that the 

where y+ = 2n/A+ and r(y+) is the wave-number spectrum of w+ (Rice 1954). 
The wave-number spectrum can be calculated from correlation function y%w+ ; 
however, no such measurements are available. It will be assumed that kW+ is 
given by the function __ kW+ = ~ + ~ e x p  ( - n ~ + ~ / 4 A 3 .  

I? = 4wf2 A& exp ( - 4rrAz+w2 yf2) 

(17) 

(18) 
- 

Then 

and the expected number of zeros per unit length is 1/(271-)iA;~. Therefore the 
following approximate relation is obtained between the wavelength A+ and the 
scale A&,: 

h+ = 5.025AA. (19) 

Mitchell & Hanratty (1966) found that the scale of the a-velocity component 
in the z direction A,+, is between 11.5 and 14.0. If it is assumed that AZW r A& 
then the estimate of A+ E 58-70 is in rough agreement with the measured dis- 
tance between updrafts given by Schraub & Kline (1965)) h+ z 75-105. It is 
felt that the visual observations of Kline et ul. are a more accurate measurement 
of A+ than that estimated from the scale measurements of Mitchell & Hanratty 
(1966). A value of A+ = 100 will be used in this paper since it is the one that has 
been used in the most recent report by Kline et al. (1967). 

On the basis of these measurements it is postulated that close to the wall the 
large-scale aspects of the w-velocity field can be represented by the periodic 
structure shown in figure 1. The dimensionless distance between updrafts A+ 
is twice the distance between the zeros of w. 

Equation (15) can be integrated (Lighthill 1950) using (9) and (13) for v+ 
and W+ and the boundary conditions C+ = 1 for y+ -+ co and C+ = 0 for y+ = 0 
to give the following equation for the local instantaneous value of the mass 
transfer coefficient: 

where I?($) is the gamma function. Here z,$ refers to a location in figure 1 where 
w+ = 0 and the fluid is impinging on the solid boundary. 

35 F L M  44 
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In accordance with the eddy model shown in figure 1 we can define s,'(z+, t+) 

(21) 
by the equation w+ = &(.+, t+) y+ = wj-(t+) b(y+z+) y+, 

where b(y+x+) could be a simple sine wave or a more complicated periodic func- 
tion. If (21) is substituted into (20) and z$ is taken as zero the following relation 
is obtained for K+: 

K+ = ga(y+z+)y+)lwf(t+)l*. (22) 

Here (23) 

(24) 
bt (y+z+) 

and a(y+z+) = 

Y' 

2 

7l n 2n 
Y+ 
- - 0 

FIGURE 1. Model of large eddies. - - - -, concentration boundary layer. 

-- 2n _ _  
Y+ Y+ Y +  

(a)  wZ(t+) < 0. ( b )  w:(t*) > 0. 

Since K+ is always positive and since the direction of w+ may change we use the 
absolute value w$ ( t+)  in (22 ) .  

The time-averaged mass transfer coefficient is given as 

E+ = r+gg(a(y+x+))E[Iw,+(t+)I)l, (25 )  

where E[lwl+(t+)l)] is the, expected value of Iwl+(t+)lf and (a(y+z+)) is the space 
average of a(y+z+) : 
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For b(y+z+) = siny+z+, 
( u ( ~ + z + ) )  = 0.854. 

Sirkar & Hanratty (1970) have found that the probability distribution function 
for sz is roughly described by a Gaussian distribution. It will be assumed that 
the probability distribution for wl+ is also Gaussian : 

P[wl+(t+)] = ~ ( 2 4 B  0- [ e x P - F  wt2(t+)1 > 

where cT2 = wl+"t+). 
It follows from (25) and (28) that 

(29) 

Thus according to the pseudo-steady-state approximation, as developed here, 
the average mass transfer coefficient varies as S-3. This result implies E N y3 
(Sirkar & Hanratty 1969). It arises because of the representation of the y de- 
pendency of w+ by (9) and because the model for the large eddies yields a non-zero 
correlation between ac/ay and as,/&. If some other function had been used, a 
different dependency on Schmidt number would have beenobtained. For example, 
if it were assumed that w+ varied as y+2 the model would have predicted that 
E+ N S-9. It is also seen that the pseudo-steady-state approximation predicts 
that B+ is related to the properties of the turbulence through the parameters y+ 
and u. The parameter u is a property of the spectrum function describing s,. 
It is less than the value calculated from the intensity s2since only the large eddies 
control the rate of mass transfer. 

According to the pseudo-steady-state model the intensity of the fluctuations 
in the transfer coefficient is given as 

k- = {g2(a2(y+x+)) y+%E[Iwl+(t+)1*]}- {g2(a(r+z+))2y+0E2[1wl+(t+)l*]}, (31) 

where (a2(y+z+)) is the space average of a2(y+z+). If wl+(t+) is defined by a 
Gaussian distribution the following result is obtained by (31) and (30): 

If (az(y+z+))/(a(y+z+))2 = 1.0 the mass transfer intensity (k%) i /P  is estimated 
as 0.30. If b(y+z+) = sin y+z+ the mass transfer intensity is estimated as 0.44. 

A relation between the spectral density functions for mass transfer, Wk(n), 
and for the w-velocity component, Kz(n), can also be calculated from the pseudo- 
steady-state model. For this purpose it is assumed that the large eddy structure 
shown in figure 1 is stationary. The instantaneous mass transfer coefficient at  a 
point x+ in an eddy is 

K+ = a(r+z+) [gr+i] [w?(t+)]+ for w:(t+) > 0, 

K+ = a,(y+z+) [gy++] [- w;+(t+)]i for w;+(t+) < 0, 

K+=O for wl+(t+) = 0, 1 (33) 

38-2 
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where a(y+z+) is given by (24) and 
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The observed variation of w+ with time close to the wall is highly irregular. 
Therefore the procedure that has been taken is to assume that wl+(t+) is given by 
a Gaussian distribution and to use the methods presented by Davenport & Root 
(1958) for full-wave non-linear vth law devices of communication engineers to 
calculate the spectrum. Details are to be found in a thesis by one of the authors 
(Sirkar 1969). 

One objection to the use of equations (33) is that they predict K+ = 0 when 
wl+(t+) is zero. Zero instantaneous values of K+ have not been observed in our ex- 
periments. In order to examine this effect more closely the time variation of K+ 
has been calculated for the case where b(y+z+) is given by a sine function. As 
shown in figure 2 the region over which K+ is predicted to have values close to 
zero is very small. 
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FIGURE 2. Time variation of K due to a sinusoidal varyingwvelocity. Location yzf = 0.5585 
radians. w:(t) = A,sinpt; K +  = a,(sinpt)*, 0 < fit d 7r; Kf = a,( -sinpt)*, 7r < /3t d 2n. 

4. Linear model of the concentration field 

for the concentration fluctuation c+: 
The following linearized form of the mass balance equation can be derived 

The use of (35) to relate k+ to the fluctuating velocity field could be justified in a 
number of ways. One of these is that w+ aC+/az+is much smaller than the estimate 
given in (7). Another is that (35) is applicable only to concentration fluctuations 
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for which c+ < 1. Still another is that (35 )  describes the effects of small dis- 
turbances on the concentration field set up by the large eddy structure treated 
in the previous section. Let C, be the concentration field set up by the pseudo- 
steady-state model. Then a small high-frequency fluctuation could be described 

-+v+- = -~ 

If (36 )  is solved and the ensemble average is taken the result is quite close to the 
solution of (35) .  

The above interpretations suggest that (35 )  should be applicable to the high- 
frequency mass transfer fluctuations. A solution of (35 )  will be sought for har- 
monic fluctuations in v+ varying as y+2 close to the wall : 

(37 )  
where P+ = 27rn+. The mean concentration field is taken as 

(36 )  
by the equation ac+ ac: 1 a2c+ 

at+ ay+ say+2‘ 

v+(y+, t+) = 0 eib’+t+ y+2, 

where 

The solution of (35) is of the form 

Using the boundary conditions 
c+ = C(y+) eiP+t+. 

(38 )  

(39 )  

we obtain the following solution of (35) : 

The spectral density functions of the v velocity and of  the mass transfer fluctua- 
tions are defined as 

(43 )  1 W P + )  = W+)Q*(P+)  
and %+(P+) = @P+) E*(P+), 
where * signifies the complex conjugate and ,8 is the frequency in radians per 
second. From (41) we obtain the relation between W8(p+) and Wk+(P+): 

4 + 100 e-2Pi + 40 e-Pi COS Pi 9 e-291 256E+4 e--2Pi 

Pf” %+(P+) = %(P+) [ (P+3s/E+2) +- s2p+2 + 

6z/(  2)[e-Pi 81n PI + e--Pi cos Pi + 5 e-ZPi] 

(S+p+*/E+) + 
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where p 1  = (3/if+) (/3+/8S)*. For S = 2300, (44) simplifies to the following for 
p+ > 10-2: 

145) 

Equation (45) is the asymptotic solution to (35) for large S. It can be obtained 
directly from (35) by asymptotic methods using inner and outer expansions. 

5. Description of the experiments 
The flow loop in which the measurements of if, I@, and W, were made is de- 

scribed in a previous paper (Sirkar & Hanratty 1970). It provided a symmetric 
fully developed turbulent flow to the 7.625in. test section which consisted of 
20in. of brass pipe electroplated with 0.0015 in. of nickel and 18 in. of nickel pipe 
having a wall thickness of & in. at  the lowest R and of 18 in. of nickel pipe at  the 
highest R. 

The test electrodes were fabricated by inserting into the wall of the nickel 
pipe nickel wires having diameters of 0.0155, 0.0245, 0.0355 and 0.123 in. A i in .  
diameter blind hole was drilled in the pipe wall until its thickness was in. 
Holes 0.006in. larger than the wire diameter were drilled into the remaining 
thickness of nickel wall. The entire hole was filled with epoxy. After the epoxy 
had hardened a hole of the same size as the wire was drilled. The wire was in- 
serted into the hole and glued in place with epoxy cement. The inside of the pipe 
wall was sanded smooth so as to leave the tip of the wire embedded flush with the 
wall and insulated from the wall. The test section and test electrode were the 
cathode for the electrochemical system. The anode is located downstream from 
the cathode and was designed so that it has an area over an order of magnitude 
greater than that of the cathode. It consists of a large number of nickel sheets 
located inside three acrylic pipes each having a length of 2 ft 3 in. and a diameter 
of 8.4 in. 

The electrolyte pumped through the system was 0-0033 N in potassium ferro- 
cyanide, 0.0033 N in potassium ferricyanide, and 1.94 N in sodium hydroxide. 
The ferricyanide ions are reduced to ferrocyanide ions at  the cathode and ferro- 
cyanide ions are oxidized to ferricyanide at the mode. The electric current 
flowing in the electrochemical circuit is directly proportional to the rate of 
reaction at  the cathode. The current I flowing through the test electrode is there- 
fore related to the rate of transfer of ferricyanide ions to a unit area of test 
electrode N by the equation I = ANF where F is Faraday's constant and A is 
the area of the test electrode. For all of the test conditions, a plot of 1 versus 
the voltage applied to the cathode and the test electrode indicated a plateau 
on which I is independent of the applied voltage. By operating in this plateau 
region one can be assured that the concentration of ferricyanide ion at the wall 
is essentially zero. Under these conditions I is directly proportional to the mass 
transfer coefficient, I = KAFC,. The temperature of the solution was controlled 
at  25 "C. The diffusion coefficient D for the ferricyanide was obtained from the 
measurements by Gordon & Tobias (1963). 

Two electrode circuits were used. One of them is for the test electrode. The 
other is for the control electrode which generates the fully developed concentra- 
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tion profile. The circuit on the test electrode converts the current into a voltage 
at  the output of an operational amplifier. The amplifier negative input con- 
nected to the electrode holds the cathode voltage constant at  the value of the 
voltage at  the positive input, which is controlled by the setting of a 1 kQ poten- 
tiometer. A 10pFfeedbackcapacitor and a 500 L2 input resistance were necessary 
to improve closed loop stability. The value of the feedback resistance Rf varied 
from 14.0kQ to 16-4Ma depending on the resistance in the electrochemical 
circuit and the electrode size. The IR drop across Rf directly gives the current 
flowing through the electrochemical circuit and is determined from the amplifier 
output voltage. The amplifier and the circuit for the control electrode were 
specially designed so that currents up to 2 amperes could be handled in the feed- 
back loop. 

6. Results of experiments 
Experiments were conducted over a Reynolds number range of 16,300-56,200. 

The measured values of -&?+ were in agreement with the value of 3.52 x 10-4 by 
Son & Hanratty (1967) at S = 2400. 

Measured values of the intensity (@)&/g for the different sizes of electrodes 
and for the entire range of Reynolds numbers studied are shown in figure 3 as 
a function of the diameter of the test electrode 2a made dimensionless with respect 
to wall parameters. The data of Shaw & Hanratty obtained in a 1 in, pipe are 
shown in the same plot. The decrease in intensity with increasing values of 2a+ 
is interpreted as being due to averaging over the electrode surface. From these 
results it is concluded that the true local value of the mass transfer intensity over 
the Reynolds number range investigated is as follows: 

- 

(k2)*/E = 0.29. (46) 

Shaw & Hanratty (1964) obtained a value of 0.48 for the intensity because they 
erroneously extrapolated their data in the manner shown by the dashed line in 
figure 3. This resulted from the use of an exponential function to describe the 
transverse component of the correlation of the mass transfer fluctuations. If a, 
correlation function of the same form as measured by Mitchell & Hanratty (1966) 
for shear stress fluctuations is assumed then a curve of the general shape as shown 
by the data in figure 3 is predicted if the non-dimensional scale in the transverse 
direction is taken as Aiz 6.7. (47) 

This is somewhat larger than the value given by Shaw & Hanratty (1964) and 
must be regarded only as a rough estimate. 

Frequency spectra measured with the smallest test electrode a t  Reynolds 
numbersof 50,300 and 17,000 areshown infigure 4. It is seen that by normalizing 
with the wall parameters the spectra at the two Reynolds numbers can be made 
to agree. The dimensionless average frequency of the mass transfer fluctuations 
(nvlu*2), defined as 
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is approximately equal to 1.3 x At a Reynolds number of 50,300 this corre- 
sponds to ( n )  = 0*28c/s. An Eulerian time scale r& can be obtained from the 
value of the spectral density function at  zero frequency. From the results in 
figure 4 it is estimated that 

The frequencies of the mass transfer fluctuations were much smaller than the 
frequencies of the fluctuations in x or z component of the wall shear stress. For 
comparison, the spectral density function for the x component Kz(n) obtained 
in a recent study by Sirkar & Hanratty (1970) at a Reynolds number of 37,800 
is sketched in figure 4. The average frequency for the transverse shear stress 
fluctuationsis about seven times as great as that for the mass transfer fluctuations. 

r& 2 125. (48) 

7. Relation of mass transfer fluctuations to velocity field 
The order-of-magnitude analysis presented in 8 2 indicated that turbulent 

exchange of mass is governed primarily by velocity fluctuations in the transverse 
direction and perpendicular to the wall. Therefore one of the interesting aspects 
of the results presented in the previous section is the very great difference 
between W,(n) and K8(n). The transfer function represented by (8) is such that 
high-frequency velocity fluctuations are ineffective in causing mass transfer 
fluctuations. For example 95% of the energy of k spectra is in a range of 
frequencies which contains only 40 yo of the energy of the s, spectra. 

The importance of the aC+/at+ term in ( 8 )  at high frequencies can be seen by 
applying the linear model. Equation (44) relates Wk+(P+) to V$(P+), where it is 
to be noted that 27rWa(P+) = R.(n+). No measurements of the .u spectra are 
available in the viscous sublayer. However it has been found (Sirkar & Hanratty 
1970) that the spectra of both the x and the z components of the fluctuating 
velocity gradient at  the wall have roughly the same shape. Therefore it seems 
reasonable to assume that W,(n+) is given by the following equation: 

From Laufer's (1954) measurements we estimate that as y+ -+ 0 

(v+",& 2 (@*y+z = 8.0 x 10-3~+2.  (50 )  

Therefore from (50) and our measurements of Kz(n+) and (Sirkar & Hanratty 
1970), we can estimate Wd(n+). Over most of the range of frequencies of our 
measurements of W,(n) the spectrum for s, is flat. Equation (45) therefore predicts 
that Wk(n+) should vary as (n+)-3 a t  high frequencies. This is consistent with our 
measurements. An actual numerical comparison between our measured Wk+(n+) 
and the spectrum predicted from (44) and the sz spectrum is given in figure 4. 
The agreement is good considering the roughness of our estimate of Wd(n+). It is 
noted that at  low frequencies the linear model diverges considerably from the 
measurements. 

The comparison of the Ic spectra predicted by the pseudo-steady-state model 
with experiment is somewhat more complicated. The linear model relates the 
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value of W,+ (p+) at  a given frequency to the value of %(p-l-) a t  the same frequency. 
According to the pseudo-steady-state model the value of W,(n+) a t  a given fre- 
quency can be influenced by the whole s, spectrum. However since it has been 
found that a large portion of the Kz(n) is contributing very little to the magnitude 
of z2 it makes sense to use only a portion of Ks(n). The procedure used is to 
assume that the value of g+ is determined by the pseudo-steady-state model so 
that can be calculated from (30). For this purpose we took E+ = 3-62 x lo-*, 
X = 2400, A+ = 100 and b(y+x+) = silly+%+. From these values we obtain 

Here the subscript s refers to that portion of (s7)i which is contributing to the 
k spectrum. Sirkar & Hanratty (1970) have measured ( F ) 4  to  be 0.09, so we see 
that the measured @ and the above-estimated parameters indicate that the 
fractionof the power in thes,spectrum that should be used in the pseudo-steady- 
state model is (0.047/0-09)2 or 27 yo. Since the s, spectrum is flat over the region 
of interest we will assume that 

W'&(n+) = N (0 < n+ 6 nl + ), 
= 0 (n+ > nt), ( 5 2 )  

nt = (r2/N. (53) 

we obtain nlf = 3.84 x (54) 

where N is obtained from the measured s, spectra as n+ + 0 and n,+ is defined as 

From the value of given by (51) and the measured W,t(n+)/sF z 70 at low n+ 

About 90 yo of the total power of 

spectrum for the transverse velocity fluctuations given by (52) €or 

lies below this frequency. 
The pseudo-steady spectrum has been calculated by Sirkar (1969) using the 

n+ < n: = 3-84 x 

and is plotted as Wi(n+)/k2 in figure 4. The calculated spectrum baaed on the 
pseudo-steady-state model is in approximate agreement with the measurements 
a t  low frequencies. It starts to  become higher than the measurements at 
n+ = 1.2 x and it intersects the frequency spectrum calculated from the 
linear model at n+ = 1.8 x The value @ calculated from the composite 
spectrum formed by using both the pseudo-steady-state spectrum and the 
linear spectrum up to  the point of intersection is in good agreement with the 
measured value. 
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